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Synopsis

An explicit reduced equation of state is developed by combining results of the hole'theory with
a semitheoretical expression for the temperature dependence of the reduced Tait parameter B which
is found to be in good agreement with experiment. This approach circumvents the implicit character
of the theoretical equations.

Two procedures are explored to derive for a given system the PVT surface and the compressional
energy and entropy changes from the corresponding reduced functions. One rests on the usual su-
perposition of experimental and analytical isotherms and isobars. The other, and more approximate
method, utilizes a correlation between the scaling temperatures, pressures, and volumes obtained
previously, and requires only experimental data at atmospheric pressure and a single temperature
above the glass transition (T,) or the melting temperature (T,,,). The good agreement between
experiment and theory noted previously is shown to extend to the semiempirical relationships.
Finally, internal pressure data for oligomers and polymers at atmospheric pressure and encompasing
a wide range of reduced temperatures are examined. The ensemble of data can be described by
simple power relationships between the internal energy apd the density. The exponents, however,
depart significantly from the van der Waal’s value of unity.

INTRODUCTION

From the practical point of view, studies of the pressure-volume-temperature
(PVT) behavior of thermoplastic materials are motivated by the need for (a)
knowledge of material properties at fabricating conditions; (b) knowledge of
material properties at use conditions.

On the other hand, such investigations represent a chapter in the continuing
story of relating macroscopic properties to molecular characteristics. However,
arecent review! illustrates the need for accurate, generalized, yet simple equa-
tions of state which would provide design engineers with the required data. A
multitude of empirical isothermal equations of state have been presented.?3
Although they contain no explicit temperature dependence, these relations have
been of substantial value for smoothing, interpolation, and extrapolation of
isotherms and for the computation of compressibilities and compressional
thermodynamic functions.}-* van der Waals-type relations®¢ developed for
polymers have included corrections for molecular contractability.”? Another,
corresponding states approach utilizes the glass temperature as a scaling factor.?
Most of these equations have been only moderately successful. However, the
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Tait equation, an isothermal relationship, has proven particularly useful in the
analysis of organic polymers®-15 following the work of Cutler on hydrocarbons.1€
Most recently, it has been applied to selenium melt.}?

In spite of their quantitative success, the Tait equation and similar relations
share the disadvantages inherent in empirical equations, which render molecular
interpretations difficult. An acceptable equation of state, apart from yielding
quantitative predictions, should provide some insight into the molecular archi-
tecture of the system in terms of a minimum possible set of parameter. Statis-
tical mechanical theory provides in principle such a rational basis. An evaluation
of experiment in the frame of such a theory then yields a set of characteristic
scaling parameters. These, in turn, should give an insight into the interplay of
intra- and intermolecular forces in determining the conformational and con-
figurational states of the system. However, in practice, such a program, par-
ticularly for chain-molecular systems, remains at best incomplete. An obvious
alternative is to combine the simplicity of empirical equations of state with the
advantages of statistical mechanical theory in developing tractable, yet general,
relations viable for the discussion of PVT and configurational thermodynamic
functions.

THE EQUATION OF STATE

In reduced co-ordinates, the Tait relation is10-15
1-V@TyV(0,T)=Cln[1+ B/B(T)] (1)

with C = 0.0894, being a satisfactorily “universal” constant for organic polymers.
A rationalization of eq. (1) was given by Nanda and Simha!8 based on the ex-
pressions

VoC = —(3B/aV) 3/ (a2P/aV2) p (2)
B=-V,C(P/sV)s — P (3)

where the tildes identify the reduced variables P = P/P* V = V/V* T = T/T*,
B = B/P*; and the starred quantities are the scaling parameters characteristic
of the particular theory employed, provided such a theory does indeed lead to
a principle of corresponding states. In egs. (2), (3), and others to follow, V,
stands for V(0,T) of eq. (1).

A computation of the derivatives in eq. (2) from the Prigoginel®-21 cell theory
equation of state indeed indicates!'822 C to be but a slowly varying function of
volume or temperature in contrast to the behavior of B. The point of the cal-
culation was to establish the Tait equation as a reduced equation of state. The
quantitative inadequacies of the cell theory have been discussed for oligomers23
and polymers.24?5 A hole theory?6 has been shown to largely remove these in-
adequacies.#131427 The equation of state derived in the hole theory is

B = 11— 28y V) 1051 + 2y DV 2L011 6 0) 2 ~ 12045]  (4)

with the following condition on the hole fraction (1 — y):
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Fig. 1. Reduced Tait parameter B as a function of reduced temperature.

(s/3¢)[1 + y~lIn (1 — y)] = (v/6T)(yV)~2[2.409 — 3.033(y V)2

+ [2- 16y (yV)-1/3 — 1/3][1 — 2~ 6y (y V)~1/3]-1  (5)

where 3c/s represents the number of external degrees of freedom per chain
segment. Due to the transcendental form of eq. (5), the equation of state is not
explicit and a numerical solution is required. This inconvenience is avoided at
atmospheric pressure by noting that the theoretical result desired from eq. (4)
with P — 0 and eq. (5) can be represented for 3¢/s = 1 by the interpolation for-
mulal4

In Vo = —0.10335 + (23.8345 X T3/2) (6a)

or
In Vo = —0.10335 + %aT 1.65 < T X 102 < 7.03 (6b)

with a standard deviation of 0.16%, where « represents the thermal expansivity
1/V(sV/aT)p. These equations have been extensively compared with experi-
mental data.22 In view of the quantitative success of the theoretical equation
of state, it would be desirable to have a simple interpolation formula available
at elevated pressures as well.

The purpose of this paper is to develop and test the consequences of such an
equation. We proceed through the reduced Tait parameter B as derived by egs.
(2) and (3). Previously, we have used!* a simplification by assigning the “uni-
versal” value to C rather than the value following from eq. (2). A combination
of egs. (1), (4), and (5) yields B as a function of the reduced temperature 7', and
the result is shown in Figure 1. This extends an earlier computation to higher
temperature (see Fig. 6 of ref. 14). It is seen that over the whole range, B is an
exponential function of temperature. This has indeed been found experimen-
tally in several polymer systems.1315:27 Algo displayed in Figure 1 are results



152 OLABISI AND SIMHA

TABLE I
Characteristic Parameters and Related Properties
PV [T,
bar-cc/
Material Pywc,ce/g T, °K  V* celg P* bar T, °K g°K

1 C, — 5888 1.2365 7648 — 1.6061
2 C, — 6500 1.2235 7600 — 1.4306
3 C,, — 6910 1.2131 7580 — 1.3310
4 C,, — 7277 1.2059 7552 — 1.2515
5 C,, - 7797 1.1955 7520 - 1.1530
6 C,, — 7979 1.1900 7490 — 1.1171
7 C,, -— 8700 1.1800 7460 — 1.0118
8 C., — 9068 1.1738 7433 — 0.9622
9 HMWLPE 0.9268 9205 1.1285 8968 (191) 1.0994
10 PVAe 1.1896 9412 0.8140 9408 304 0.8137
11 LPE 0.9794 9772 1.1417 7478 (203) 0.8737
12 H. Rubber 0.9109 9831 1.0774 7465 204 0.8181
13 HR-6% S 0.9596 9877 1.0286 8690 226 0.9050
14 HR-11.5% S 1.0090 9925 0.9743 10269 252 1.0080
15 PnBMA 1.0571 9988 0.9299 8456 293 0.7873
16 LPEa 0.9726 10046 1.1548 7160 (208) 0.8231
17 BPE 0.9320 10139 1.1601 6946 (210) 0.7948
18 BPEa 0.9183 10328 1.1641 6765 (214) 0.7625
19 i-PMMA 1.2190 11170 0.8160 10088 320 0.7370
20 PCHMA 1.1011 11290 0.8906 8382 380 0.6612
21 PVCa 1.3928 11320 0.7105 10345 349 0.6493
22 PMMA2 1.1876 11890 0.8350 9303 378 0.6533
23 PMMA 1.1834 11920 0.8370 9147 378 0.6423
24 PS 1.0466 12680 0.9598 7453 365 0.5641
25 PSa 1.0471 12700 0.9625 7638 362 0.5789
26 PoMS 1.0217 12740 0.9762 7458 404 0.5715

a4 Experimental data from ref. 38.

for several amorphous polymers in the liquid state. Here, the original data have
been reduced by the appropriate pressure and temperature scaling parameters
listed in Table I. These have been derived earlier by the superposition of ex-
perimental and theoretical isobars and isotherms.%1327.28 The extent of
agreement illustrated by Figure 1 allows us to proceed. The equation of the
straight line is

B = 0.9549 exp(—49.227) (7
Equations (1), (6), and (7) then yield the reduced equation of state:

(P, T) = 0.9018 exp(23.8345T/2)
X [1.0 — 0.0894 In{1.0 + 1.0472P exp(49.22T)}] (8)

Therefore, the reduced thermal expansivity is
& = 35.7518TV/2 — 49.22%P 9)

where the isothermal compressibility & is given by

,~<=c(<1—01n(1 +§)) (15+B)—1] (10)
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Fig. 2. Correlation between characteristic compressibility factor and characteristic temperature
for polymers and oligomers appearing in Table I. Solid line, eq. (12).

The configurational contribution to the Griineisen parameter can also be cal-
culated following the recent development by Warfield:2®

.1 /901/%)
e <aP

2

According to eq. (11), vz should assume a universal maximum value of 5.093 for
organic polymers. With increasing pressure, v, decreases at a higher rate for
the more compressible material. Note also that slight variations in C will pro-
duce somewhat larger fractional changes in v, since dvyr/yr = —(1 — C)~1dC/C.

Of paramount practical importance is the accuracy in the PVT description
of thermoplastic materials. The very satisfactory performance?!3:27:28 of the
theoretical eqgs. (4) and (5) does not necessarily imply a similar success of the
semiempirical eq. (8). Moreover, we now have two ways of evaluating PVT
relations from eq. (8). The first utilizes the scaling parameters in Table I to
convert from the reduced to the actual variables of state (calculation A). The
second, and more approximate one, makes use of an empirical correlation? be-
tween the scaling parameters (calculation B). The correlation relation is

)T - % [(1/C = 1) = In(1 + B/B)] (11)

P*Vy* 3
I ( ) = 1.3191 — <—) T* X 10—4 12
U 201) ¢ ) (12)
The adequacy of eq. (12) may be judged from Figure 2. Then, for a new polymer,
only a knowledge of « and Vg at asingle T'2 Ty or T X Ty, is needed. Substi-
tution into eq. (6b) provides V*. From the known Vyand T, T* is obtained by
means of eq. (6a). Alternatively, V* and T* can be derived more accurately by
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the usual superposition procedure.13:27.28 In either case, the unknown pa-
rameter is P* which is readily computed from eq. (12). The goodness of fit of
procedures A and B with experiment is illustrated in Table II for poly(n-butyl
methacrylate) above its T, and in Table III for polyethylene above its T,. The
former allows for a wide range of temperatures above T, whereas the latter
represents an example of crystallizable polymer. For both systems, the dis-
crepancies, which are much less than 1% in all cases, increase with increasing
pressure. For poly(n-butyl methacrylate), the deviations at 2000 bar in calcu-
lation A range from —0.3% to +0.15% as temperature increases from 73.5° to
199.56°C. At similar conditions, the range is +0.7% to +0.62% for calculation B.
The more positive tendencies in the error reflect the overestimation of P* (7%
higher than case A).

For polyethylene, the average discrepancy between calculations A, B, and
experiment at 2000 bar is —0.42% and —0.45%, respectively. In this instance,
the slightly more negative tendencies for calculation B reflect the underesti-
mation of P* (4.4% lower than case A). Nonetheless, the agreement between
experiment and the semiempirical procedure is excellent.

Being able to generate PVT data for any polymer from a minimum knowledge
of volume and thermal expansivity at atmospheric pressure and a single T’ = T
and T = T, represents one of the significant achievements of this work. It must
be cautioned, however, that eq. (12) may be in error for polymers with very low
reduced glass transition temperatures and/or high values of T*. Then, procedure
B may be unreliable.

THERMODYNAMIC FUNCTIONS

Here, we consider the compressional energy AU = _U (I?,T) -—_U (0,T), the
corresponding entropy AS, and the internal pressure (3U/aV)+ = P;. The Tait
relation and eq. (7) yield the following expressions:

AU = —(Tay/C — 49.22T + Taog — 1)PV,C
+ (TaoB + TaoP — 49.22TB — B)}(Vo— V)  (13)
AS = [AU = CVoP + B(Vy— W)|/T (14)
B, = TagP+ B)V/ICVy— P(49.22T + 1) (15)

where &g is the reduced thermal expansivity at zero pressure. In Figures 3-7,
we compare the semiempirical calculations with the hole theory and the exper-
imental data. For the compressional energy and entropy, Figures 3-5, a principle
of corresponding states is satisfied, at least for the high polymers, but the dif-
ferences between the theoretical and the semiempirical relations increase at
higher temperatures and pressures. As anticipated, therefore, the difference
in the internal pressure under compression, Figure 6, is more pronounced.
Much larger deviations are observed between the experimental data and the
semiempirical result on one hand and the hole theory on the other in respect to
the internal pressure at atmospheric pressure, see Figure 7. Since P; = (4U/aV) 7,
the appearance of a maximum in the P,—Vor P;—T function is readily understood
from the familiar shape of the potential energy curve and the fact that the system
starts out-from the bottom of the well at low temperature, to pass to the right
with increasing temperature. The theory, however, locates the maximum at too
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Fig. 5. Change of reduced configurational entropy as a function of reduced pressure at a constant
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high a temperature, whereas experimentally it is hardly seen in the range under
consideration, except possibly for poly(n-butyl methacrylate), see no. 15 in Figure
7. This deficiency, pronounced at elevated temperatures, which we have pointed
out in previous®!327 discussions, is not exhibited to the same extent by the
semiempirical relation. The reader may also judge the approximate validity
of a principle of corresponding states in respect to the internal pressure by means
of Figure 7 and consider the element of experimental error. For convenience,
three additional empirically derived curves (A, B, and C) are drawn to encompass
the multitude of data exhibited in Figure 7. They can all be represented by
exponential relations, viz.,

A:

- 0.6012

Pi = ‘72993 (16&)
B:

~ 0.5332

p; = {72869 (16b)
C:

- 0.4659

(A {72.665 (16¢)

These should be compared with the expression obtained by Nanda et al.,30:3!
with proper allowance made for the different coordinates of the cell and the hole
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theories, namely,
-~ 0.982

¢ 1/2.850

17)

Equations (16b) and (17) can be made almost identical by dividing the latter by
a constant factor of 1.845. Now, eq. (17) was obtained from cohesive energy data,
and so this result implies a relation between the scaling factor P* as obtained
by two different methods.

The internal energy U is obtained by integration of eq. (16). Thus,

e
(m — 1)Vim-D

with (m — 1) equal to 1.993, 1.869, and 1.665, respectively. Hence, the single
exponent, suggested by Hildebrand and Scott3? and Frank,33 remains, but it is
closer to 2 than 1, a fact which expresses the well-known inadequacy of a van der
Waal’s expression for the internal energy. Another method of arriving at the
exponent in eq. (18) has been extensively used by Allen et al.3¢ and by Bagley3®
who employ the relation

U= (18)

P, =(m - 1)(ced.) (19)

where c.e.d. represents the cohesive energy density obtained for polymers from
swelling measurements, a procedure of limited accuracy. It is not possible to

l l {
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o % i~ PMMA
P
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Fig. 6. Reduced internal pressure as a function of reduced volume at constant temperature.
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calculate c.e.d. directly from PVT measurements except via eq. (19). However,
it is possible to use the theory to compute P; as well as c¢.6.d. and inspect the ratio
Pi/c.&.d. One finds that for a reduced temperature range of 0.0373-0.0573, the
ratio decreases monotonically from ~0.80 to ~0.74. That is, c.e.d.>P;, contrary
to observation.34-36

Finally, the corresponding states behavior illustrated in Figure 7 can be utilized
to develop a relation for the isothermal compressibility as P — 0:

P; = Tag/x (20)
Equations (8) and (16) are substituted for &g and P; to give

k=15 (VT) (in o + 0.10335) (21)
where a and m are the parameters of egs. (16).

So far, the discussion has centered on the properties of amorphous high
polymers above the glass transition temperature and on semicrystalline polymers
above the melting point. We note, however, in Figure 7 a series of data points
for oligomers derived from Doolittle’s measurements.3” No particular pattern
is discernible, except for the wider range of temperatures covered. However,
a detailed examination! of AU and of the characteristic product P;V?2 as a
function of pressure shows significant departures from the pattern defined by
the high polymers, and thus the theory as well as the semiempirical results. This
is primarily the result of the higher temperatures in question. Although this
is not apparent in the V~T function at atmospheric pressure,28 the theory re-
mains most appropriate at lower temperatures, the introduction of holes not-
withstanding. This carries over to the semiempirical expressions employed here.

CONCLUSIONS

A complete reduced equation of state has been developed, based on the reduced
form of the Tait equation, by inserting the temperature dependence of the Tait
parameter B and the reduced volume at atmospheric pressure, V. Both
quantities are derived from theory, but the semiempirical character of the
analysis arises from the acceptance of the experimental constancy of the Tait
parameter, C.

Two procedures are explored to derive for a given system the PVT surface,
the internal pressure, and the compressional energy and entropy changes from
the corresponding reduced functions. Agreement with experiment is satisfac-
tory.

The authors thank the Union Carbide Corporation for the use of the laboratories’ computer fa-
cilities. Partial support has been received from the National Science Foundation.
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